Vascular Changes in Diabetic Retinopathy

Alan Stitt
Centre for Vision & Vascular Science
Queen’s University Belfast
Characteristics of the retinal microvasculature

How this microvasculature and the neuroglial network is altered in diabetes

Pathogenic mechanisms

Understanding pathogenesis can lead to better treatments

Type 2 Diabetic
9 years duration
Unique nature of the retinal vasculature

- Highly specialised end-artery system
- Autoregulation of blood flow in response to metabolic needs of neural retina
- Multi-cell capillary unit
- Inner retina blood barrier (analogous to Blood brain barrier)
Retinal blood vessels do not occur in isolation
Retinal Capillary Structure
Capillary pathology in human diabetic retinopathy: BM thickening
Progression of microvascular pathology in diabetic retinopathy
Vascular remodelling – not reperfusion in diabetic retina:

Gardiner et al. Microcirculation 2007 14: 1–14
Sight-threatening stages – only after extensive vasodegeneration
What causes vasogeneration?
AGE-inhibition prevents blood retinal barrier breakdown

AGE INHIBITION PREVENTS MICROGLIAL ACTIVATION IN DIABETIC RETINA

GCL
INL
ONL

Non-Diabetic
Diabetic
Diabetic (PM)

IL-1beta
TNF-alpha
IL-10

Relative expression versus β-actin

Expression ratio

control diabetic

0.0000
0.00005
0.00010
0.00015
AGE-inhibition prevents acellular capillary formation

Figure A

- Endothelial cell
- Acellular Capillary
- Pericyte

Figure B

- Average number of pericytes/field

Graph

- No. of acellular capillaries/field
- Control vs. Diabetic Control vs. Diabetic AGE-i

Graph

- Avg. number of pericytes/field
- Control vs. Diabetic Control vs. Diabetic AGE-i

References:

Neural & vascular dysfunction

Retinal capillaries Occlusion & death of

Neural abnormalities Neuroglial dysfunction

BRB breakdown

Retinal ischaemia & up-regulation of angiogenic GF's

Development of neovascularisation - onto retinal surface

Pan-retinal Laser photocoagul

Tractional detachment

Pre-retinal neovascularisation

Retinal Ischaemia

iBRB breakdown Oedema

Microaneurysms
• Tissue protective / anti-inflammatory in brain injury (stroke) models
• Non-erythropoietic
• 11 amino acid peptide – crosses blood brain (& retinal) barrier

Daily ip injections of pHBSP or scrambled peptide for 28 days

PNAS 2008 105:10925-30
An EPO analogue protects against capillary degeneration

• Diabetes is a vasodegenerative disease

• Diabetes impacts on all cells of the retina – not just the vasculature.

• Inflammation is now recognised as a key component of early-stage degenerative diabetic retinopathy

• Pathogenesis is complex and multi-factorial. Intervention could prevent progression to sight-threatening stages.
Hypoxia is increased in early diabetes

- Pimonidazole hydrochloride (2-nitroimidazole)
- Activated in cells at $pO_2<10\text{mmHg}$

Diabetes

Leukostasis

Inflammation

Endothelial cell death

Capillary dropout

BM thickening

Microaneurysms

Pericyte/Smooth Muscle Dropout

Hypoxia

Endothelial cell death

Capillary dropout

Hypoxia

Hyperpermeability

Neovascularisation

Early diabetes

Early and long-term diabetes

Long-term diabetes

Abnormal autoregulation

Retinal Hyperperfusion

Curtis et al. Eye 2009 Jul;23(7):1496-508
Static leukocytes are in flux, block capillary flow, and transmigrate.

Miyamoto K et al. PNAS 1999;96:10836-10841
Non-diabetic

Diabetic

Evans Blue Leakage

0
0.004
0.008
0.012

Non-diabetic

Diabetic
Glial – vascular abnormalities in early diabetes

Antonetti et al.
Diabetes 2006 55(9) 2401-2411
Pro-inflammatory processes in diabetic retina

- **IL-10**
 - Expression ratio
 - Control vs. diabetic

- **TNF-alpha**
 - Relative expression vs. β-actin
 - Control vs. diabetic

- **IL-1beta**
 - Relative expression vs. β-actin
 - Control vs. diabetic
Diabetic rodents show the early stages of retinopathy
Neural and glial abnormalities in early diabetes